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Abstract

In this paper, we analyze the performance of a communication system employing M-ary fre-
quency shift, keying (FSK) modulation} with errors-and-crasutcs decoding using Viterbi ratio thresh-
old technique for erasure insertion, in Rayleigh fading and AWG N channels. First, wc maximize
the code rate of the channel code that canbe used reliably via the optimum usc of erasures. This is
accomplished by considering the capacity or the cutofl rate of the underlying discrete memoryless
channel as the performance metric. Then, we examine the performance of the M-ary FSK system
with optimum Reed-Solomon codes as measured by the minimum 812140~ oo ratio required to
achieve a code word error probability of 10-5 via the optimum use of erasures.



1 Introduction

The use of error-correcting codes is of major importance in @ variety of digital communication
systems. Error-correcting codes arc particularly useful andcan provide large potential gains in
communication systems operating over pulsed interference channels or Rayleigh fading channels.
For these channels, with forward error-correction, the improvementin signal-to-noise ratio can be
on the order of 30 dB. This performance can be furtherimproved if errors-all(I-cr~slites decoding
is employed in place of the usual hard decisions decoding.

in the literature, communication systems with errors-aml-erasures decoding have received a lot
of attention. However,in these studies, the rate of the channel code is typically fixed and the code
word error probability is evaluated for different methods of erasure insertion. For example, in [1],
Baum and Pursley analyze the performance of frequency-]lop comnmunications with Baysian erasure
insertion; in[2], McKerracher and Wittke evaluate the performance of [?rcquclLcy-Hopped Spread
Spectrum (FHSS) transmission with Reed-Solomon coding, paralel errors-and-erasures decoding
and Viterbi ratio threshold technique. On the other hand, wefind some studies investigating
the implications for coding designin systems with errors-only decoding. Forexample,in [3],
Stark computes the capacity and cutoff rate of noncoherent FSK with hard and soft decisions in
Rician fading channels, from which optimum code rates arc determined;in [4], Khalona determines
optimum Reed-Solomon codes for hard decision decoding of nonccherent FSK in Rician fading
channels using the bit error probability as the performance criteria. Furthermore, in [5], Ritcey
and Azizoglu investigate the effect of blanking on the capacity and cutoff rate of a binary symmetric
erasure channel. It is shown in this study that a controlled amount of erasures improves the channel
capacity.

In this paper, wc analyze the performance of a communication system employing M-ary fre-
quency shift keying (k' SK) modulation with errors-allcl-cras(lrcs decoding using Viterbi ratio thresh-
olding for erasure insertion, over Rayleigh fadingand AWGN channels. First, we maximize the code
rate of the channel code that canbe used reliably via the optimum usc of crasures. This is ac-
complished by considering the capacity and the cutof'rate of the underlying discrete memoryless
channel as the performance metric. This code rate is optimum in the sense that it minimizes the
signal-to-noise ratio necessary for reliable communications. !I"hen, wc examine the performance of
the M-ary FSK system with optimum Reed-Solomon codes as measured by the minimun signal-
to-noise ratio required to achicve a code word error probability of 105 via the optimum use of
erasures.

2 System Description

We consider the system shownin Fig. 1. Data is first encoded with a nonbinary (N, K) Reed-
Solomon code. The elements of the code words are sclected from an alphabet of 29 symbols, so that
g information bits arc mapped into one of the 27 symbols. The length of the code word is denoted
by N =27—1, the number of information symbols encoded into a block of N symbols is denoted
by K = N — 2¢, where t symbol errors are correc:table, and the normalized code rate is given by
re=K/JN .

A nonbinary Reed-Solomon code is particularly matched to an M-ary modulation scheme for
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Figure 1. System diagram.
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transmitting the M = 27 possible symbols. Specifically, M-ary FSK is frequently used, such that
cach of the 2°symbols is mapped to onc of the M orthogonal signals. ‘1'bus, the transmission of a
code word is accomplished by transmitting a sequence of N orthogonal signals, where cach signal
is selected from the set of M possible signals. The sequence may be transmitted with or without
interleaving. Interleaving enforces the memoryless channel under uncorrelated fading.

Therefore the modulation considered is that of M-ary FSK, with Viterbi ratio threshold test
as the erasure generation technique, over slow nonselective Rayleigh fading (and AWGN) channels.
The system is detected noncoherently, with the optimum detector basing its decisions on the squared
envelopes of thereceived signal samples. Throughout the analysis, we assume that the channel is
memoryless, which IS equivalent to assuming that the attenuation due to fading is independent
from symbol to symbol. In redlity, this attenuation is a slowly varying function of time, meaning
the real channel is not memoryless. The engineering solution to the memory in the channel is to
employ au ideal interleaver.

Let us assume that the modulator and the demodulator/detector are included as part of the
channel. This createsan equivalent discrete syminetric erasure channel with M inputsand M +1
outputs, since wc consider M-ary FSK modulation with erasure of unreliable symbols.If X is the
input to the channel, thcu X =: 4 corresponds to transmitting a carrier modulated signal sg(¢)

sk(t) = R s k=12, M 0SS, (1)

where

suk(t) = \/?;—'15-&2"“”', (2)
is the equivalent lowpass signal and Af is the minimum frequency separation between adjacent
frequencies. The M-ary orthogonal signals are equally probable and have egua encrgy F;.

The received signal 7(t) consists of tWo components: thetransmitted signal with attenuation «
and phase ¢ uniformly distributed on the interval {0, 27], and a white Gaussian noise component
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Figure 2: Receiver structure.

n(t) with two-sided spectral density No/2. The attenuation o has mean square FE(a?)= 1 and is
Rayleigh distributed with

Pal(z) = 22 C»T?, x> 0. (3)

Over one symbol interval, ¢t € [O, T], the received signal is given by

r(t) = R {acsp (1) et 4, n(t). (4)

The received signal is further passed through the demodulator am] the noncoherent square-law
detector. The optimum receiver structure which employs 2M correlators, two for each possible
transmitted frequency fr = fo+ kASf, k=1,2,. ... M, is shown in Fig. 2. The M decision mectrics
at tile detector are the M square-law envelopes,

, 7\‘,3]\/73;(10”’ + 7lll2 k=1 (5)
g J
k N e ? k=2,.... M

The decision variables {7} are then used as inputs to the decision device that employs Viterbi
ratio threshold test [8]. Decisions on whether to crase are made by comparing envelope detector
outputs to a fraction of the largest output intheset. More specifically, a received symbol is erased

if
rj > AT for some r; # 7y (©)

where r;» = max{r,72,. .., rpr } and X is a fixed threshold inthe interval [0, 1]. In other words, the

gap between the largest and the second largest outputinthe set must be big enough for a symbol
not to be erased. For those symbols not erased, standard hard-decision demodulation is employed.
The decision device is followed by a Reed-Solomon errors-alld-cr:wllrcs decoder. Setting the erasure
threshold A = 1, resultsin errors-only decoding of the detected symbols.



Reed-Solomon codes are practically important for two reasons. First, Reed-Solomon codes arc
maximum-distance separable, they have the largest possible 111111111111111 distance,1.¢.dmin= N —
K + 1. Second, there exists efficient errors only and errors and crasures decoding algorithms, which
make it possible to implement relatively long codes inmany practical applications. A bounded-
distance decoder capable of erasure deccoding can correctly decode all received words containing s
errors and ¢ erasures as long as ¢ and s satisfy the constraint (2s + ¢) <dmin- The performance
of the bounded-distance errors-aud-crcasurcs decoder may be characterized by the code word error
probability, P.. This probability is equal to ouc minus the probability of correct decoding by the
Reed-Solomondccodc!r, given by the tail of the trinomial

ld ';ng:’l‘J diin—2s-1
i} it N N _ s e
Pe=1- E 5_ ( ) ( e )1’57’§(1 — Pe *Ps)N i c, (7

S
s=0 e=0
where ps, p, is the probability of error aud erasure, respectively.

~

3 Performance Analysis

In this scction we compute the probabilities of correct symbol decision, pc, symbol erasure, p, and
incorrect symbol decision, p¢ for the noncoherent M-ary FSK system with Viterbi ratio threshold
technique for erasing unreliable symbols, in Rayleigh fading and AWGN channels. Since transmitted
symbols arc assumed to be equally probable, it is sufficient to calculate Pe, pe, and ps when the
symbol z; is transmitted. Wc compute these probabilities following Baum and Pursley [1]. Let
f(-) aud F(-)denote the pdf aud cdf of the {ri}’s containing signal plus noise, aud g¢(-) aud G(-)
be the pdf and cdf of the {r;}’s containing the noise aone. The probability of a correct symbol
decision, p, isgiven by

pe =Prlri> e An> g for all j # 1]
= Pr[Ar; > r; for all j#1], (8)

where the second equality follows from the fact that 0 < X < 1. Conditioning on the event {71 = 2},
We find

i

/000 (GO fa)da

0o Ar M-1
= /0 [/0 g(g/)dg/} f(z)de. (9)

The probability of incorrect symbol decision, py, is equal to (M — 1) times the channel transition
probability that, say ¥2is the output given that 1 is the channelinput

Pe

Pr(yz|z1) =Prlro>15,Ar2 > ¢ for all j #-2]
= Pr{Ary > 7, rp > 15 forall j#1,2] (10)



Conditioning on the cvent {72 = 2} and then averaging over the values of  gives

pe = (M—1) /O CFO@)] (GO 2 g(a)ds
AM-2

00 T AT
= (M- 1)/0 [OA f(y)dy] [/0 g(y)dy] g(z)dz. (12)

The probability of symbol erasure can be found fromn the expression

Pe=1—1Dc— Ps . (12)

In presence of Rayleigh fading, the {r}’s are exponentially distributed, Proakis [6], with

T
= . e 13

and

F(r)=1—-exp {»»Tu—,‘} . (14)

Here I' = E5/No is the average received symbol signal-to-noise ratio. In the case of AWGN and
without fading, the {r;}’s are non-central chi-square distributed. The corresponding pelf and cdf
are given by

fr)=exp{-(r+ 1)} Iy (2\/7T) , (15)

F(r)=1-Q, (V2I, /27). (16)

Here Io is the modified Bessel function and Q1 is Marcum’s Q-function [6, p.44]. When no signal
is present, the {rx }'s are exponentially distributed in both the Rayleigh fading and AWGN case.
By virtue of our scaling, the pdf and cdf are given by

9(r) = exp{-1}, )

G(r)=1-exp{-r}. (18)

For Rayleigh fading channels, closed-form expressions for the probability of correct symbol
decision and the probability of symbol erasure are obtained using binomial expansion

M-1

O M--1 1
Pe = ;}(—1)] (I I+ )+ T (19)
M-2 M1 AGH+1)
Ps = ]_2% (‘1)]( j+1 )'A‘(ji+1)+(1i|')(jx+1)2“ (20
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Figure 3: M-ary Discrete Symmetric Channel with Erasure.

However, for M > 32, (19) and (20) are numericaly ill conditioned and wc compute ps and p by
Gauss Laguerre integration of order zero.

For AWGN channels, no closed-form expressions are known. The probability of correct symbol
decision and the probability of symbol erasure arc computed numerically from

- /oo [1 ~ c"’\T]MV 1 - (HI‘)]O (2\/ﬁ) dz, (21)
0
pe= = 1) [T 1= @i (varvas)] 1 e ] e v (22)

4 Capacity and Cutoff Rate

The underlying channel model of the M-ary system describedin section 2, results in the discrete
symmetric channel with erasure illustrated in Fig. 3. Theinput-output characteristics of the channel
are described by the set of transition probabilities {pi;}:

1--ps—pei=j i=12,...,M
pij = Priyslai) = ¢ po/(M - 1) i+ j# M+1 (23)
Pe ] =M1

where p, is the probability of symbol erasure aud p; is the probability of incorrect symbol decision
computed iu section 3.

The capacity of this discrete memoryless channel with a finite input alphabet X = {2, 22, . . . . Tar}
and aﬁn;El(]: output alphabet Y = {yi,y2,....yar,¥ar41}, where yary1is an erasure symbol, is given
by [7, P-4/

C = max I(X;Y), (24)

Pr(x;)



where 7(X; V) is the average mutual information provided by the output Y about the input X. Due
to th( symmetxy of the channel, the distribution that achiceves capacity is the uniform distribution
Pr(z;) = 1/M, for i =1,2,... M. After simplification, the capacity of the M-ary symmetric
ch(nmcl with erasure is found to be

C = log, M(1- pc)(l — Hp (1 ﬁs )) bits/channel use (25)
where Hps(+) is the M-ary entropy function
Hpr(z) ™ —a logar(z) (1 —2)logp(1-- z) + xlogp (M - 1). (26)
For the same channel model, we define the cutoff’ rate as
—_— Mel ‘2\
Ry - fl'lfl(%)‘() { l;)g? [?:1 ZI’ D Pr(y;)z: l (27)

As inthe case of channel capacity, anequiprobable distribution on the input alphabet, Pr(z;)=
I/M, for i = 1,2,..., M achieves the maximum vaue. Consequently, under the uniform input
distribution, the expression for fo reduces to

Ry = logy M -- logQ[l + (M = 1)pe -t (M - 2)p, 4 Z\XM - Dps(1-—-ps — pc)l. (28)

The expressions given above in equation (25) and (28) are used together with pe and ps from
section 3 to obtain the capacity aud cutoff rate of thecodedsystem. The results are presented in
the next  Section.

5 Results

In this section we present some numerical results for the channel capacity and cutoff rate. We
arcinterested in finding the largest possible transinissionrate for which reliable communication is
p ossible, or equivalently, the smallest possible information bit signal-to-noise ratio, £»/No, which
guarantees arbitrarily small error probability with codes of rate 2. (information bits per channel
symbol). The channel coding theorem of information theory guarantees that there exist channel
codes (and decoders) that make it possible to achieve reliable communication, with as small au error
probability as desired, if the transmission rate is less than the capacity. We take cutoff rate, f20, as
a practical value of capacity as suggested by the computational complexity of sequential decoders
[10, p.318). Therefore, wc calculate the minimum €/Nonccessary for reliable communications by
computing the channel capacity aud cutoff rate. F;rrors-axld-erasures decoding is assumed, and the
results are obtained by optimizing the threshold X to maximize C' aud 2. We compare the results
for the Rayleigh fading channels with those for the AWGN channel. Both errors ouly aud errors
and erasures is considered.

We follow the analysis presented by Stark [3] aud Wilson [10]. First, we relate the channel
symbol signal-to-noise ratio, Es/Np, t0 the information bit signal-to-noise ratio, €»/Noby E,/Ny=



R.Ey/Ny. Next, wecquate R.=C (or IR, == Iy ), and find the solution for &,/Ng for different code
rates in the range O < I, < logy M. This solution provides a lower bound on €/No required for
reliable communication. From (25) and (28), we sce that for a given alphabet size M, the capacity
and cutoff’ rate of the discrete symmetric channel with erasure arc functions of ps,the symbol error
probability, and p, the symbol erasure probability, which in turn depend on R, £,/Np and A. To
remove the A dependence, we maximize over O <A< 1 to obtain

&y
o (St Y 29
R c(chOA) (29)

and solve numerically for

&  C YR, AN

— = el 30

Ny R, (30
where A\* is the optimum erasure threshold. Similarly, based on cutoff rate calculations, the lower

bound on &,/Ng required for reliable communication is found by solving

& 15 (R, X)
No TR,

Both capacity and cutoff rate arc functions of the erasure threshold A.In Fig. 4 wc illustrate the
channel capacity (in bits per channel use) with Rayleigh fading for different values of the alphabet
size M, at Fi/No = Fs/Nolog, M =8 dB. Notice that there exists an optimum erasure threshold
A* which maximizes the channel capacity, and that A* varies with M. Observe that for a constant
Ey,/Ng, \* increases with M.

The locus of the solutions to (30) and (31) arc illustrated in Fig. 5 for channel capacity, and
Fig. 6 for cutoft rate. Thesc loci were obtained by picking Fs/Ny values, finding the maximum
capacity (Or cutoff rate) with optimum threshold selection, cquating It, = C (or o), and then
converting F5/No to the required £,/Ny. InFig. 5 wc show the minimum &, /Ny loci implied by the
capacity limit for noncoherent demodulation of binary FSK on the interleaved Rayleigh channel and
the AWGN channel. In addition, wc show the minimum &,/Ng loci of the solutions to equation (30)
for A = 1, corresponding to the errors-only decoding case. Similarly,in Fig. 6 we illustrate the
minimum £,/No loci implied by the cutoff rate limit, for the Cases Of errors-and-erasures decoding
and errors-ollly decoding, infading and nonfading channels.

Wc observe severa interesting features from the curves of Figs. band 6. First, wc note that there
exist optimum rates inthe minimum encrgy sense, for al the cases shown. Thus, the information
bit sigllal-to-noise ratio &,/Noreaches a minimum at the optimum code rate, and then increases for
both higher and lower rates. This behavior is not found with coherent demodulation, in which case
Ey/No decreases monotonically with a decreasein code rate [6, p.404]. Secondly, wc observe that
errors-atlcl-erasures decoding with optimumn threshold selection is more efficient in the minimum
energy sense than errors-only decoding for both Rayleigh and AWGN chaunels. This is a main
conclusion of our study. For example, if the optimal code rate is chosen based on cutoff rate for the
Rayleigh channel, errors-and-erasures decoding costs around 0.7 dB less relative to the minimum
Ey/Nonecessary for errors-o]lly decoding.

(31)



Table 1. Minimun &Ey/No and optimum code rates based on capacity.
A & /Ny (dB) Rate

"Rayleigh Errors-and-crasures  0.49 _9.62 0.23
—Errors-only 100 1024 021

"AWGN  Errors-and-erasures “0.55  7.34 0.52
" Errors-onl 100 7.82 0.52

Tabl(z‘Zfil'\ﬁ}Mfm Ey/No and optimum code rates based on cuto ff rate.
A E,/No (dB) Rate

" Rayleigh Errors-and-erasures  0.45 1221 0.16
“Errorsonly ___ 1.00 12.94 013

AWGN  13rors-and-erasures 050 916 0.54~
“FErrors-only :_—‘ 1.00 9.84 0.46

Lastly, wc notice that the AWGN channel exhibits a broad optimum-rate region from about
0.3 to 0.7 bits/channel use, while the Rayleigh channel is characterized by smaller optimum rates
and greater sensitivity to the code rate variations. Also, note that the loss incurred by Rayleigh
fading compared to no fading, inthe capacity sense, is around 2.3 dB for the optimal code rate
and errors-a@cm-surcs decoding. The optimuin code rates and erasure thresholds together with
the minimum & /Ng based on channel capacity and cutofl rate for the binary o1 coherent FSK are
summarized in Tables 1 and 2 respectively.

For M-ary noncoherent FSK with M larger than 2, the minimum information bit signal-to-noise
ratio implied by the capacity limit is shown in Fig. 7 for the Rayleigh channel, and in Fig. 8 for the
AWGN channel. In both figures, assuming errors-and-erasures dqecoding with optimum threshold
selection, we plot the minimum &,/Noloci versus the normalized code rate, 7. = R./logy M (in
information symbols per channel use), for M = 2,4,8, and16. Two equivalent plots for the
minimum information bit signal-to-mist ratio implied by the cutoff rate are illustrated in Fig. 9
for the Rayleigh channel, andin Fig. 10 for the AWGN channel. From al these plots we observe
that as M increases beyond 2, the minimumn &,/Ng needed for reliable comnunications reduces.

Finally, wc determine how well the optimum code rates obtained from the channel capac-
ity and cutoff rate limit predict the performance of practical, finite-length Rind-Solomon codes.
Consequently, We evaluate the performance o f Reed-Solot yon coded M-21y FSK modulation with
errors-and-('rasurcs decoding over the Rayleigh and AWGN channels.  Assuming codes of length
N = M - 1, the performance of the optimum (N, K) Reed-Solomon codes can be determined using
(7) for the probability of code word error F’%.

In Fig. 11 we illustrate the &,/Noloci measured to achicve acode word error probability of
107°, for M = 16,32,64,128, and 256 in Rayleigh fading channels. Similar curves are shown in
Fig. 12 for AWGN channels. These curves were obtained by varying the information gy inhols into
the code and therefore the code rate, and at cach rate finding numerically the signal-to-noise ratio
with optimum threshold sclection such that > = 10°. We notice that these plots have similar
characteristics as those based on capacity or cutoff rate limit, and that they essentially predict

9



I"able 3: Optimum Reed-Solomon codes and gb/NiquuirC(l for I’c. - 10-5.

" Rayleigh I GN
D (N, K) &/No (dB) | ) y Kl &/No (dB)
0.4 (15, 3) 14.7 0.7 (15,9 A
0.5 (31, 7) 115 | 0.8 (31,21) 5.6
0.6 (63, 17) 9.2 | 0.8 (63,43) 45
0.6 (127, 35) 78 | 0.8 (127, 83) 3.8
0.7 (255, 73) 6.8 | 0.9 (255,173) 3.2

the same optimum code rates. Also, it is observed that the signal-to-noise ratio required for a
10-5 code word error probability with short length Reed-Solomon codes is much higher than the
lower limit on €6/No for reliable communication. However, as the code word length (equivalently
the signal set size) increases, the gap between the signal-to-noise ratio required for a 10°code
word error probability and the lower limit predicted by the capacity (or cutoff rate) decreases. For
example, with M = 256, the &/No required by Reed-Solonlon codes is within approximately 2.8
dB of the capacity limit in Rayleigh channels, and within 1.2 dB of the capacity limit in AWGN
channels. The optimum Reed-Solomon codes, together with the information bit signal-to-noise ratio
&y/No required to achieve P. = 10"°, and the corresponding erasure thresholds are summarized
in Table 3. Moreover, our results show a significant performance improvement with errors-and-
erasures decoding of the optimum Reed-Solomon codes listed in ‘Jable 3, compared to errors-only
decoding of the same codes in Rayleigh channels. For example, at a code word error probability
of 105, errors-only decoding requires at least 3 dI3 more than errors-and-erasures decoding of the
(15, 3) l{ccc1-Solomon code in Rayleigh fading. On the other hand, there is wry little performance
improvement with errors-and-erasures decoding over errors-only decoding for the AWGN channels.

6 Conclusion

The purpose of this paper isto design error-correcting codes for an M-ary noncoherent FSK system
with errors-and-erasures decoding, on channelssubjected to Rayleigh fading (or white Gaussian
noise). Wcshow that Reed-Solomon codes can be designed for optimum rate and optimum erasure
threshold, as measured by the minimum signal-to-noise ratio necessary for reliable communications.
This minimum is calculated by computing the channel capacity or cutoff rate. Using the channel
capacity (or cutoff rate) as the performance criteria is justified by the channel coding theoremn of
information theory, which guarantees the existence of codes with rates less thauthce capacity, for
which arbitrarily small error probability is possible. Moreover, we areinterested in comparing the
performance of theseinfinite length codes, with the performance of practical errors-al[l-craslircs
Reed-Solomon codes for the M-ary FSK system. Optimum Reed-Solomon codes were obtained to
minimize the sigllal-to-noise ratio necessary to achieve a probability of code word error of 10™. It
was shown that the results obtained for optimumn rates of Reed-Solomon codes arc close to those
obtained by the capacity or cutoff limit. The main conclusions drawn from our results are:
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. ljow-rate codes (ininformation symbols/channel usc) are optimumn for the M-ary noncoher-
ent FSK system over Rayleigh fading channels, provided significant bandwidth expansion is
acceptable. In AWGN channels, moderate-rate codes arc optimum for the M-ary noncoherent
FSK  system.

. The energy efliciency of the M-ary noncoherent FSK system is increasing with a larger a-
phabet size, at the expense of reduced bandwidth efficiency.

. The optimum code rates predicted by the capacity or cutoff rate limit arevery close to the
optimum rates of Reed-Solomol~ codes achieving a code word error probability of 105 with
the M-ary noncoherent system.

. Erasures decoding of Reed-Solornon codes provides significant performance improvement over
the fading channels (measured by the probability of code word error), but does not provide
significant gain for the additive white Gaussian noise channels.

The results obtained here can serve as benchmarks of obtainable performance and should be
useful in validating the results of simulation studies. Furthermore, the analysis presented can be
readily extended to other fading channel models, such as the Rician and Nakagami fading models.
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Minimum €s/No loci based on cutoff rate, AWGN channel.
Ey/No required for P, = 10°, Rayleigh channel.

Ev/No required for P == 105, AWGN channel.
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Figure 4: Capacity versus erasure threshold for M = 2,4,8,16 at Ey/No =8 dB, Rayleigh channel.
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Figure 6: £/ No loci based on the cutoff pate A = 2.
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Figure 8: Minimum &/No loci based on capacity, AWGN channel.
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Figure 9: Minimum &,/ Ny loci based on cutoff rate, Rayleigh channel.
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Figure 10: Minimum &/Nploci based on cutoff rate, AWGN channel.
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